Higher order Matching Pursuit for Low Rank Tensor Learning

نویسندگان

  • Yuning Yang
  • Siamak Mehrkanoon
  • Johan A. K. Suykens
چکیده

Low rank tensor learning, such as tensor completion and multilinear multitask learning, has received much attention in recent years. In this paper, we propose higher order matching pursuit for low rank tensor learning problems with a convex or a nonconvex cost function, which is a generalization of the matching pursuit type methods. At each iteration, the main cost of the proposed methods is only to compute a rank-one tensor, which can be done efficiently, making the proposed methods scalable to large scale problems. Moreover, storing the resulting rank-one tensors is of low storage requirement, which can help to break the curse of dimensionality. The linear convergence rate of the proposed methods is established in various circumstances. Along with the main methods, we also provide a method of low computational complexity for approximately computing the rank-one tensors, with provable approximation ratio, which helps to improve the efficiency of the main methods and to analyze the convergence rate. Experimental results on synthetic as well as real datasets verify the efficiency and effectiveness of the proposed methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Greedy Optimization and Applications to Structured Tensor Factorizations

Efficiently representing real world data in a succinct and parsimonious manner is of central importance in many fields. We present a generalized greedy framework, which allow us to efficiently solve generalized structured matrix and tensor factorization problems, where the factors are allowed to be from arbitrary sets of structured vectors. Such structure may include sparsity, nonnegativeness, ...

متن کامل

Cross: Efficient Low-rank Tensor Completion

The completion of tensors, or high-order arrays, attracts significant attention in recent research. Current literature on tensor completion primarily focuses on recovery from a set of uniformly randomly measured entries, and the required number of measurements to achieve recovery is not guaranteed to be optimal. In addition, the implementation of some previous methods are NP-hard. In this artic...

متن کامل

3d Interpolation Using Hankel Tensor Completion by Orthogonal Matching Pursuit

Introduction. Seismic data are often sparsely or irregularly sampled along one or more spatial axes. Irregular sampling can produce artifacts in seismic imaging results, thus multidimensional interpolation of seismic data is often a key processing step in exploration seismology. Many solution methods have appeared in the literature: for instance in Spitz (1991), Sacchi (2000) it was proposed to...

متن کامل

Optimal Low-Rank Tensor Recovery from Separable Measurements: Four Contractions Suffice

Tensors play a central role in many modern machine learning and signal processing applications. In such applications, the target tensor is usually of low rank, i.e., can be expressed as a sum of a small number of rank one tensors. This motivates us to consider the problem of low rank tensor recovery from a class of linear measurements called separable measurements. As specific examples, we focu...

متن کامل

Accelerated Online Low Rank Tensor Learning for Multivariate Spatiotemporal Streams

Low-rank tensor learning has many applications in machine learning. A series of batch learning algorithms have achieved great successes. However, in many emerging applications, such as climate data analysis, we are confronted with largescale tensor streams, which pose significant challenges to existing solutions. In this paper, we propose an accelerated online low-rank tensor learning algorithm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1503.02216  شماره 

صفحات  -

تاریخ انتشار 2015